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The energy cascade in a strongly stratified fluid
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A cascade hypothesis for a strongly stratified fluid is developed on the basis of
the Boussinesq equations. According to this hypothesis, kinetic and potential energy
are transferred from large to small scales in a highly anisotropic turbulent cascade.
A relation for the ratio, lv/ lh, between the vertical and horizontal length scale is
derived, showing how this ratio decreases with increased stratification. Similarity
expressions are formulated for the horizontal and vertical spectra of kinetic and
potential energy. A series of box simulations of the Boussinesq equations are carried
out and a good agreement between the proposed hypothesis and the simulations is
seen. The simulations with strongest stratification give horizontal kinetic and potential
energy spectra of the form EKh

=C1ε
2/3
K k

−5/3
h and EPh

=C2εP k
−5/3
h /ε

1/3
K , where kh is the

horizontal wavenumber, εK and εP are the dissipation of kinetic and potential energy,
respectively, and C1 and C2 are two constants. Within the given numerical accuracy,
it is found that these two constants have the same value: C1 ≈ C2 = 0.51 ± 0.02.

1. Introduction
The horizontal mesoscale (wave lengths ∼1–500 km) wavenumber spectra of kinetic

and potential energy measured in the upper troposphere and lower stratosphere
(Vinnichenko 1970; Nastrom, Gage & Jasperson 1984; Nastrom & Gage 1985) have
been debated for several decades. It is a remarkable feature of these spectra that
they exhibit a k

−5/3
h -dependence, just as the spectrum of three-dimensional isotropic

turbulence. This is seen in figure 1, where we have reproduced the classical spectra
from Nastrom & Gage (1985). It has often been speculated (e.g. Gage 1979; Lilly 1983;
Métais et al. 1996) that these spectra can be explained by the existence of an inverse
cascade of energy, from small to large scales, just as in two-dimensional turbulence
(Kraichnan 1970). The opposite hypothesis has also been advocated, that the spectra
arise from a forward cascade of nonlinearly interacting gravity waves (Dewan 1979;
1997). Observational and theoretical work by Cho & Lindborg (2001), Lindborg &
Cho (2000, 2001a) and Lindborg (2002) give support to the forward cascade
hypothesis. There is also some evidence from numerical investigations supporting this
hypothesis rather than the inverse cascade hypothesis. Koshyk & Hamilton (2001)
have performed high-resolution general circulation model simulations exhibiting a
quite realistic mesoscale spectrum. They conclude that ‘the −5/3 spectral regime is
not a quasi-2D inertial subrange’, but ‘contains a significant gravity wave component’.
Riley & deBruynKops (2003) have performed high-resolution direct numerical
simulations of strongly stratified freely decaying turbulence which clearly show a
forward cascade type of dynamics with horizontal energy spectra exhibiting an
inertial range very close to k

−5/3
h . Waite & Bartello (2004) have performed simulations

of strongly stratified turbulence which is forced in large-scale vortical modes and
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Figure 1. From left to right: variance power spectra of zonal wind, meridional wind and
potential temperature near the tropopause from Global Atmospheric Sampling Program
aircraft data. The spectra for meridional wind and temperature are shifted one and two
decades to the right, respectively. [Reproduced from Nastrom & Gage 1985.]

which reaches a nearly stationary state, suggesting that there is a flux of energy from
large to small scales. They see no signs of an inverse cascade. Skamarock (2004) has
performed a large statistical study of high-resolution forecast simulations, initialized
with large-scale fields corresponding to observed data. He found that the k

−5/3
h -range

develops from initial fields lacking all mesoscale variability. The computed spectra
show a remarkable similarity with the Nastrom–Gage spectrum. This clearly suggests
that the energy of the mesoscale motions emanates from larger scales rather than
smaller scales of motion.

In this paper, we develop the forward cascade hypothesis further and develop
a similarity hypothesis for such a cascade. To do this, not only the horizontal
energy spectra should be considered, but also the vertical energy spectra. Balloon
measurements (Dewan & Good 1986; Cot 2001) show that vertical one-dimensional
kinetic and potential energy spectra have a range of wavenumbers, corresponding to
wave lengths ∼100–1000 m, with a k−3

v -dependence, or very close to such a dependence.
In figure 2, we have reproduced the vertical spectra measured by Cot (2001), using
rising ballons. Such spectra are traditionally interpreted as originating from linear
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Figure 2. Vertical spectra of horizontal velocity and temperature from the statosphere.
[Reproduced from Cot 2001.]

internal gravity waves. Here, we shall assume that they should instead be interpreted
as arising from one and the same type of nonlinear chaotic motion as is giving rise to
the horizontal k

−5/3
h -spectrum, and that this motion is governed by the fully nonlinear

Boussinesq equations.

2. Hypothesis
The Boussinesq equations in a non-rotating frame of reference can be written

∂u
∂t

+(u · ∇)u = −∇p + ν�u +Nezφ, (1)

∂φ

∂t
+ (u · ∇)φ = κ�φ − Nw, (2)

∇ · u = 0. (3)

Here, u is the velocity field, ν and κ are, respectively, the kinematic molecular viscosity
and diffusivity, ez is the vertical unit vector, N is the Brunt–Väisälä frequency,
φ = gT ′/(NTo), where T ′ and To are the fluctuating and equilibrium temperatures,
respectively, g is the acceleration due to gravity and w = ez · u is the vertical velocity
component.

In this paper, we will not consider the case with system rotation although Coriolis
effects are generally very important in the atmosphere. The k

−5/3
h -range seen in figure 1,

continues up to fairly large wavenumbers corresponding to wave lengths of about
1 km. At these scales, Coriolis effects are by all likelihood of minor importance. If
there is a single physical mechanism behind the generation of the whole k

−5/3
h -range,

which is very plausible, it is therefore reasonable to seek this mechanism without
introducing Coriolis effects at first. In this respect, we differ from Tung & Orlando
(2003) who claim to have reproduced the whole spectrum range seen in figure 1,
including both the k−3

h -range and the k
−5/3
h -range, in a quasi-geostrophic (rotationally
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dominated) two-level model simulation. For the k−3
h -range, the claim seems to be

justified. However, as for the k
−5/3
h -range which is produced for the very highest

wavenumbers, it remains to be shown that this is not an artefact of too low a
resolution, as pointed out by Smith (2004). In a companion paper (Lindborg 2005),
we present a series of numerical simulations including system rotation and show that
the results presented in this paper also are valid in the case with system rotation,
provided that this is not too strong.

Apart from total energy, the inviscid Boussinesq equations conserve potential
vorticity, Π = ∇ × u · (∇φ + ezN ). The theoretical argument that is often developed
in favour of the inverse cascade hypothesis is that the existence of a second
conserved quantity should lead to an inverse energy cascade just as in two-dimensional
turbulence, where the second conserved quantity is enstrophy. This argument can be
valid if it can be shown that ∇ × u · ∇φ � ∇ × u · ezN in the strongly stratified limit, so
that Π ≈ ∇ × u · ezN . If this were the case, the vertical component of vorticity would
be approximately conserved at a fluid particle, and the dynamics would be very much
like two-dimensional turbulence or quasi-geostrophic turbulence. In the latter case,
conservation of potential vorticity can actually lead to an inverse energy cascade, as
shown by Charney (1971). In the general case, however, this is not so. This can be
seen by considering the limit of no stratification, that is when N = 0. In this limit,
the system (1)–(3) reduces to the traditional incompressible Navier–Stokes equations
together with the equation for the scalar φ, which in this case is a purely passive scalar.
Potential vorticity is still conserved and is generally not equal to zero. The solutions
of the equations includes classical three-dimensional Kolmogorov turbulence with a
forward energy cascade as well as a forward cascade of scalar concentration φφ/2.
According to the scaling hypothesis developed in this paper and also developed by
Billant & Chomaz (2001), the term ∇ × u · ∇φ will be at least of the same order as the
term ∇ × u · ezN in the limit of strong stratification. Hence, if this scaling hypothesis
is correct, there is no reason to believe that the energy cascade should be in the
inverse direction for strongly stratified flows. It seems more reasonable to believe that
it should be in the forward direction.

To make it plausible that the vertical k−3
v -spectra starting at wavenumbers corres-

ponding to the length scale lv ∼ 1 km, arise from the same forward cascade dynamics
as the horizontal k

−5/3
h -spectrum, starting at wavenumbers corresponding to the length

scale lh ∼ 500 km, we must derive a relation for the length scale ratio lv/ lh. To do this,
we consider a system, governed by (1)–(3), in which kinetic energy is injected at a rate
P , in the form of large vertically oriented vortices with horizontal length scale lh. In
the absence of vertical shear, this system should, according to conventional wisdom,
be very stable. However, we assume that the system will become unstable very much
in the same way as a system undergoing the ‘zigzag instability’ discovered by Billant &
Chomaz (2000a, b) or the ‘tall-column instability’ investigated by Dritschel & de la
Torre Juárez (1996). These instabilities set in if the stratification is strong enough
and introduce strong vertical gradients into a system which is originally lacking any
vertical variation. We further assume that a chaotic state will develop subsequently
in which energy cascades from large scales of motion to small scales of motion. For a
statistically stationary and homogeneous system the equations for mean kinetic and
potential energy, EK = 1

2
〈u · u〉 and EP = 1

2
〈φφ〉, can be derived from (1)–(3)

0 =P − εK + N〈φw〉, (4)

0 = − εP − N〈φw〉, (5)
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where εK and εP are the dissipation of kinetic and potential energy, respectively.
The potential energy content in the k

−5/3
h -range of the spectrum in figure 1 and in

the k−3
v -range of the spectrum in figure 2, is of the same order of magnitude as the

corresponding kinetic energy content. Billant & Chomaz (2001) have shown that
there is a fundamental scale invariance in the Boussinesq equations in the limit of
strong stratification, and that this invariance implies an approximate equipartition
of energy between kinetic and potential energy. We will instead, as a starting point,
assume that there is approximate equipartion in the fully developed system, and show
that the Billant & Chomaz invariance follows as a consequence of this assumption.
Thus, we assume that EP ∼ EK, φ ∼ u and εP ∼ εK , where u is a horizontal velocity
component. We also adopt the classical estimates by Taylor (1935),

u ∼ (lhε)
1/3, EK ∼ (lhε)

2/3. (6)

where ε = εK + εP . The continuity equation (3) gives w ∼ lvu/lh. By applying these
estimates to the energy equations (4)–(5) we find

lv

lh
∼ ε1/3

Nl
2/3
h

≡ Fh, (7)

where the Froude number Fh is an inverse measure of the strength of the stratification.
From (4)–(5) it follows that P = ε and Fh is therefore determined by the three paramet-
ers N , P and lh which are imposed on the system. From (7), directly follows the relation

lv

lO
∼ F

−1/2
h , (8)

where lO = ε1/2/N3/2 is the Ozmidov length scale, which is about the smallest scale for
which the strongly stratified cascade hypothesis can be applied. Thus, (8) is an estimate
of the range of vertical scales for which the hypothesis is supposed to be valid.

Implicit in the assumption of the existence of a cascade is the assumption that
nonlinear inertial forces cannot be neglected, since it is only through such forces that
a cascade can be maintained. The ratio between inertial forces and buoyancy forces
can be measured by the vertical Froude number Fv = u/(Nlv). It is easily verified that
(6) and (7) also give

Fv ∼ 1, (9)

which is the basic invariance implied by the analysis of Billant & Chomaz (2001).
Indeed, the result (7) can also be directly derived by combining (9) with Taylor’s
estimate (6). The hypothesis presented in this paper, can thus be interpreted as stating
that, in the limit of low Fh, the statistically stationary solutions of the Boussinesq
equations are characterized by a forward energy cascade which is not violating the
Billant & Chomaz invariance. That Fv ∼ 1 means that inertial forces will be of the
same order as buoyancy forces, no matter how strong the stratification is. For a given
horizontal length scale lh, the vertical length scale will adjust so as to maintain the
balance between inertia and buoyancy. When the stratification is stronger the vertical
gradients will become stronger and the vertical length scale will become smaller.

For low Froude numbers, there will be a strong separation between the vertical and
horizontal length scales, i.e. lv � lh. In such a case, it is reasonable to assume that
only the horizontal length scale enters into the expressions for the horizontal energy
spectra and only the vertical length scale enters into the expressions for the vertical
spectra. We therefore assume that the horizontal one-dimensional energy spectra of
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kinetic and potential energy are of the similarity form

EKh
(kh) = u2lhẼKh

(khlh) ∼ ε2/3l
5/3
h ẼKh

(khlh), (10)

EPh
(kh) = u2lhẼPh

(khlh) ∼ ε2/3l
5/3
h ẼPh

(khlh), (11)

and the corresponding vertical spectra are of the form

EKv
(kv) = u2lvẼKv

(kvlv) ∼ N2l3v ẼKv
(kvlv), (12)

EPv
(kv) = u2lvẼPv

(kvlv) ∼ N2l3v ẼPv
(kvlv), (13)

where the four functions with a tilde are dimensionless. Here, kv = |kz| and kh is the
magnitude of the horizontal wavenumber corresponding to the direction in which the
spectrum is measured. If, for example, the spectrum is measured in the x-direction,
then kh = |kx |. The first forms written down in (10)–(13) of these similarity assumptions
are, in fact, very weak. Assuming that each spectral quantity is determined by a single
length scale lh or lv and the velocity scale u, they are the only possible similarity
expressions. In the second form, Taylor’s estimate (6) and the scale relation (7) have
been used, which leads to very different scaling behaviour for the vertical and the
horizontal spectra.

The maximum vertical wavenumber kvmax
for which the similarity expressions (10)–

(13) can hold will scale with the Ozmidov length scale, so that kvmax
∼ 1/lO . At

wavenumbers larger than kvmax
, the effect of stratification will not be strong enough

to maintain this type of scaling and there will be a transition to classical three-
dimensional turbulence. The corresponding maximum horizontal wavenumber khmax

will also scale with the Ozmidov length scale. However, khmax
will be considerably

smaller than kvmax
.

For horizontal wavenumbers such that 1/lh � kh < khmax
, it can be assumed that the

horizontal energy spectra should become independent of lh, and for such wavenumbers
we should therefore have

EKh
(kh) ∼ EPh

(kh) ∼ ε2/3k
−5/3
h . (14)

Analogously, for vertical wavenumbers such that 1/lv � kv < kvmax
, it can be assumed

that the vertical energy spectra should become independent of lv , and for such
wavenumbers we should therefore have

EKv
(kv) ∼ EPv

(kv) ∼ N2k−3
v . (15)

These relations were suggested by Dewan (1997) based on similar assumptions to those
made here. The vertical spectra (15) were also suggested by Billant & Chomaz (2001),
as a direct consequence of their scaling theory. Lumley (1964) suggested a turbulence
model spectrum exhibiting a transition from a k−3-dependence in the low wavenumber
end dominated by the effect of buoyancy to a k−5/3-dependence in the high wave-
number end dominated by classical Kolmogorov turbulence. However, Lumley’s model
spectrum is isotropic as is the k−11/5 spectrum for buoyancy-dominated turbulence
suggested by Bolgiano (1959). Since these early works, numerous observations have
shown that the strongest effect of buoyancy is to introduce different scaling behaviour
in the vertical direction as compared to the horizontal direction rather than altering
the shape of an isotropic spectrum.

To be able to test relation (7), we require an independent definition of the vertical
length scale lv . Assume that the vertical spectrum of kinetic energy scales as (12).
Then, to within a constant factor of the order of unity, lv can be determined from the
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expression ∫ kvmax

0

EKv
(kv) dkv∫ kvmax

0

kvEKv
(kv) dkv

, (16)

Here, we will use this expression as the definition of lv . We also define a corresponding
length scale, l′

v , over which the potential energy varies, as

l′
v =

∫ kvmax

0

EPv
(kv) dkv∫ kvmax

0

kvEPv
(kv) dkv

. (17)

If the spectra fall off faster than k−2
v as kv → ∞ then the upper integration limit kvmax

in (16) and (17) can be replaced with ∞.

2.1. Order of magnitude estimates

Using realistic parameter values, we make order of magnitude estimates to check
that the hypothesis that we have developed is realistic and also estimate the critical
Froude number, Fhcrit

, under which limit the hypothesis can be applied. We choose

lh = 500 km, lv = 1 km, N = 2 × 10−2 s−1 and To = 225 K. As for the value of ε, Cho &
Lindborg (2001) and Lindborg & Cho (2001b) made the estimates εK = 6.0 ×
10−5 m2 s−3 and εP = 2.0 × 10−5 m2 s−3, based on third-order structure-function cal-
culations using airplane data from the lower stratosphere. Using the value ε = 8.0 ×
10−5 m2 s−3, we find

Fh = 3.4 × 10−4 ≈ 0.2lv/ lh, (18)

which we think is close enough to the estimate (7). For the typical velocity and
temperature fluctuations, we find

u ∼ (εlh)
1/3 ≈ 3 m s−1, T ′ = ToφN/g ∼ To(εlh)

1/3N/g ∼ 1 K, (19)

and for the eddy turnover time,

τ = l
2/3
h /ε1/3 ∼ 40 h, (20)

which all seem reasonable. As for the estimate of the critical Froude number, it has
been observed (see figure 3 in Vinnichenko 1970) that there is a region in the horizontal
energy spectra around a wavenumber corresponding to a wave length of 1 km, where
the k

−5/3
h -range ends. Some of the measured spectra exhibit a sudden increase and

some of the spectra exhibit a sudden decrease in magnitude for wavenumbers higher
than this. We interpret these observations as evidence of a transition from the
low-Froude-number asymptotic cascade, or ‘stratified cascade motion’ to classical
three-dimensional turbulence. The critical Froude number can be estimated by setting
lh = 1 km. We thus find

Fhcrit
≈ 0.02. (21)

For Fh considerably lower than Fhcrit
, the motion is dominated by the stratified

cascade, and for Fh considerably larger that Fhcrit
, the motion is dominated by the

three-dimensional turbulence cascade. As for the maximum horizontal and vertical
wavenumbers for which the hypothesis can be applied, we can now estimate them as

khmax
∼ F

3/2
hcrit

2π/lO, kvmax
∼ F

1/2
hcrit

2π/lO. (22)
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We shall not think of three-dimensional turbulence as homogeneously distributed
in space; on the contrary, it is very intermittently distributed. It is well known that
three-dimensional turbulence prevails in extended pancake-shaped domains or blinis
in the atmosphere as well as in the ocean. For this reason, it is difficult to determine
experimentally an exact wavenumber where the transition takes place. This is true
for the horizontal as well as the vertical wavenumber. For the horizontal spectrum
we have used the observations of Vinnichenko (1970) to estimate the critical Froude
number and thereby the typical transition wavenumber. As for the vertical spectrum,
measurements of Alisse & Sidi (2000) indicate that the transition from a k−3

v to a
k−5/3

v spectrum in the atmosphere takes place in the wavenumber range corresponding
to about 10 m. This is consistent with the estimate (22), since, with our estimated
values of ε and N , the Ozmidov length scale is about 3 m. However, owing to the
intermittent distribution of three-dimensional turbulence, there is no visible transition
in one and the same measured spectrum. Some of the spectra in this wavenumber
range show a k−3

v -dependence and some of them show a k−5/3
v -dependence.

3. Simulations
In order to simulate a low-Froude-number cascade in a box with periodic boundary

conditions, just as is common practice for isotropic turbulence without stratification,
the relation (7) suggests that it would be appropriate to use a box which is much
larger in the horizontal direction than in the vertical direction, rather than a cubic
box. If Lx is the length of a horizontal side of the box, we can set the vertical side
length, Lz, so that Lz/Lx ∼ Fh. This is simply because the height of the box does not
need to be much larger than the largest vertical physical length scale that will develop
in the box. On the other hand, we should also have

lv/ηv � 1, (23)

where ηv is the vertical diffusion length scale. As we will see, a characteristic feature of
the motion we will simulate is the formation of layers. This strong tendency to layer
formation was discovered by Herring & Métais (1989) in simulations of forced stably
stratified turbulence. The layer thickness, which can be identified with lv , will become
thinner as we decrease the Froude number. If for a fixed lh we decrease the Froude
number without a corresponding decrease in the vertical diffusion length scale, the
layers will soon become comparable to the diffusion length scale. In this way we
will enter into the low-Reynolds-number regime by just increasing the strength of
the stratification, without making any change to the total number of computational
points. With Navier–Stokes diffusion, the diffusion length scale is equal in the vertical
and horizontal directions, that is the Kolmogorov scale η = ν3/4/ε1/4. From Taylor’s es-
timate (6), the classical relation lh/η ∼ Re

3/4
h follows, where Rh = ulh/ν is the Reynolds

number based on the horizontal length scale. If nh is the number of computational
points required in each horizontal direction, then the number of points required in the
vertical direction is nv ∼ nhFh and the total number is n3

hFh ∼ Re
9/4
h Fh ∼ Re9/4

v F
−5/4
h ,

where Rev is the Reynolds number based on lv . In arriving at the last relation we have
used (7). With lv ∼ 1 km, u ∼ 3 m s−1 and ν ∼ 3 × 10−5 m2 s−1, we have Rv ∼ 108 in the
atmosphere. It is evident that even if Rev were several orders of magnitude smaller,
it would be impossible to reach the low-Froude-number regime using Navier–Stokes
diffusion. With Fh = 10−3 and thirty million computational points, we would have to
choose Rv < 100. The flow would be controlled by viscosity to a very strong degree.
We can see only one way out of this dilemma and that is to modify the diffusion terms
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in (1)–(2), in a way that will permit us to decrease the vertical diffusion length scale
as we increase the strength of the stratification, without any change of the horizontal
diffusion length scale. Thus, we replace the diffusion operator in (1) with

−νh�
4
h − νv

∂8

∂z8
, (24)

where �h is the horizontal Laplace operator. The use of the higher-order differential
operators in (24) has the advantage of narrowing the wavenumber band in which
dissipation is important. The different diffusion coefficients permit us to use a grid
for which the horizontal resolution is larger than the vertical resolution, that is
�x = c�z where c > 1. The ratio between the number of resolution points in the
horizontal and the vertical directions should now be nh/nv ∼ 1/cFh. By permitting
the scale factor c to increase, that is by stretching the grid, as we let Fh decrease,
we can, for a given nv , go to the limit of small Fh, without increasing nh beyond all
practical limits. However, there must be a lower limit to how small the ratio �z/�x

should be. This limit can be determined by the degree of anisotropy we can expect
at the smallest resolved scales. As we will see, �z will in general be chosen as a
little larger than the Ozmidov length scale lO . For the simulations with strongest
stratification we will choose �z ≈ lOF

−1/2
hcrit

= 7lO , so that the corresponding vertical

cutoff wavenumber will be approximately equal to the value we estimated for kvmax
.

This choice is motivated by our interest in the dynamics of scales larger that lO which
are strongly influenced by stratification. According to (22), at the smallest resolved
scales the degree of anisotropy can thus be estimated as khmax

/kvmax
∼ Fhcrit

≈ 0.02.
Thus, we should take �z/�x � 0.02. In the simulation with strongest stratification
(run 10), we have not pushed this limit since we used �z/�x = 1/24. The shortcoming
of the method of taking �z/�x � 1 is that three-dimensional overturning motions
arising from Kelvin–Helmholtz instabilities in regions with strong vertical shear will
not be well resolved. Riley & deBruynKops (2003) observed that such instabilities
occur even in strongly stratified flows if the Reynolds number is sufficiently high. In
this study, the resolution is generally sufficient to capture the horizontal breaking of
shear layers that such instabilities generate, but not, in all cases, enough to resolve
the fine structure of the flow field where these instabilities appear.

In equation (2), an expression corresponding to (24) is introduced, including a
horizontal and a vertical diffusivity, κh and κv . In Fourier space, the expression
corresponding to (24) is

−νh

(
k2

x + k2
y

)4 − νvk
8
z . (25)

The dissipation of kinetic and potential energy are exactly calculated as

εK =
∑ (

νh

(
k2

x + k2
y

)4
+ νvk

8
z

)
û · û


, (26)

εP =
∑ (

κh

(
k2

x + k2
y

)4
+ κvk

8
z

)
φ̂φ̂
, (27)

where the hat denotes the Fourier transform, the star denotes the complex conjugate
and the summation is taken over all wavenumbers. The Fourier transform is defined
as

û(kx, ky, kz) =
1

LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0

u exp(i(kxx + kyy + kzz)) dx dy dz. (28)

To simulate a stationary cascade, we must introduce some kind of forcing, injecting
energy into the system at a rate P . It is desirable that P is perfectly controllable,
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so that it can be verified that the dissipation is equal to the energy injection, i.e.
ε = P . In this case, it is also desirable that the forcing does not introduce any vertical
length scale into the system, since we would like to check the relation (7) as far
as we can. Thus, if the forcing has a characteristic horizontal length scale lh, but
no characteristic vertical length scale, we would like to check that, for a given Fh,
structures with vertical length scale lv will be generated. This could be accomplished
by letting the forcing be restricted to horizontal modes, i.e. to modes for which the
vertical wavenumber, kz, is zero. However, with such forcing, modes for which kz 
= 0
will never grow if they are initially zero. Since we use zero initial fields, we require
some additional weak forcing in vertical modes to trigger the development of vertical
gradients. We would also like to avoid a forcing which imposes a preferred time
scale into the system. The natural time scale which should develop by itself, is the
eddy-turnover time scale, (20), independently both of which value we use for N and
the kind of forcing we use. We would also like to check, independently of the forcing,
that the amount of potential energy will become independent of Fh for small Fh, and
that the energy content in the vertical velocity component will decrease as

Ew = 1
2
〈ww〉 ∼ F 2

h EK, (29)

as we decrease Fh.
To meet all the desired requirements as far as possible, we introduce a random

white-noise forcing exclusively to the horizontal velocity equations, injecting energy
into the system at a rate P . The forcing is divided into two parts, the main part
being truly two-dimensional, i.e. it is not only restricted to the two horizontal velocity
components, but also restricted to Fourier modes for which kv = 0. We let this part of
the forcing be responsible for 99 % of the energy injection. It has a two-dimensional
spectrum

Sf (kρ) = kρ exp((kρ − kf )2), (30)

where kf is the wavenumber around which the forcing is concentrated

and kρ =
√

k2
x + k2

y . The spectrum is normalized so that∫ ∞

0

Sf (kρ) dkρ�t = 0.99P, (31)

where �t is the time step. This procedure will guarantee that the required amount of
energy is injected. Numerical fluctuations of the injection rate are avoided by using a
similar method to that developed by Alvelius (1999). The 1.0% of the energy which
is not injected into horizontal modes is instead injected into the three modes for
which kz =(3, 4, 5) × 2π/Lz and kx = ky =0. This part of the forcing is introduced to
trigger the development of vertical gradients, which is necessary for the energy to
spread from the horizontal to the vertical modes. The energy injection in each of
these three modes is P/300 and is equally distributed over the two horizontal velocity
components. With this type of forcing, the horizontal length scale is determined by kf

and can be set to lh = 2π/kf , while it can be assumed that the forcing in the vertical
modes is sufficiently weak for the vertical length scale to develop independently of the
forcing. In order for energy to spread to all modes, we must force at least two vertical
wavenumbers, one odd and one even. The particular choice we made was motivated
by our wish to leave the large vertical wavenumbers undisturbed and at the same
time not to introduce forcing at the very smallest wavenumbers corresponding to the
height of the box. However, it does not really matter what wavenumbers we choose.
The result will essentially be the same, as long as the vertical forcing is weak. We
have made several tests with forcing in different wavenumbers to investigate this. We
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have also injected only one thousandth of the total energy into vertical modes, with
essentially the same result. The difference is that the transition to a stationary state
will be somewhat delayed using such a weak vertical forcing. As we shall see, it is also
possible to shut off the vertical forcing once the vertical structures have developed.

We make a series of direct numerical simulations of the Boussinesq equations
(1)–(3) where the diffusion terms have been modified and forcing has been added in
the specified ways. The boundary conditions are periodic. Six runs are carried out in
a 2562 × 32 box, two runs are carried out in a 5122 × 32 box, one in a 5122 × 64 box
and one in a 7682 × 48 box. Starting from zero initial fields, the equations are solved
using a standard pseudospectral code and a second-order four-step Runge–Kutta
scheme with adaptable time step. The time step is limited by a stability condition, as
described in Lundbladh et al. (1999). Full dealiasing according to the 3/2-rule is used
in all simulations except the two largest (runs 9 and 10). The number of grid points
is given in physical space, which means that the total number of Fourier modes used
to calculate the nonlinear terms is a factor 27/8 larger in the eight runs in which we
have used dealiasing.

The values of the diffusion coefficient are determined to obtain a state in which
the injected energy is dissipated at the smallest resolved scales �x and �z. With
the modification of the viscous terms, the horizontal dissipation length scale or
‘Kolmogorov scale’ can be estimated as ηh = (νh/ε

1/3)3/22, with a corresponding
expression for the vertical dissipation length scale. Thus, we should have

νh = κh =(a�x)22/3P 1/3, (32)

where a is a constant, and a corresponding expression for νv = κv , in which �x is
replaced by �z. It was found that a =0.75 was sufficient to resolve accurately the
peaks in the dissipation spectra.

The series of simulations is performed as follows. The horizontal sides of the box
are set to Lx = Ly =2π. The energy injection is put to P = 1 and the horizontal forcing
wavenumber is always kf =4 with the corresponding forcing length scale lh = π/2.
The Froude number Fh = P 1/3/Nl

2/3
h is varied by varying N . First, we make a run

(number 1) in a box with Lz/Lx = 1/8 and equal horizontal and vertical resolution,
�x = �z. After some trial and error we found that N =12 was an appropriate value
to use in this simulation, corresponding to Fh = 0.0617. With this value we could see
that structures developed with vertical length scale smaller than the height of the box
and at the same time larger than �z. The Froude number of this run is somewhat
higher than the value we have estimated for Fhcrit

. For run numbers 2–5 we then
halve the Froude number step by step by increasing N by a factor of two for each
run. At the same time, we halve the ratio Lz/Lx . Runs 6–10 will be discussed after the
presentation of runs 1–5. For runs 1–5 we use νh = κh = 1.89 × 10−13. The simulation
parameters are given in table 1.

4. Results
In figure 3, we have plotted the normalized total energy E/(P lh)

2/3 and the
normalized potential energy EP /(P lh)

2/3 versus normalized time, t̃ = t/τ = tP 1/3/l
2/3
h ,

for runs 1–5. As we can see, after an initial linear growth of energy, there is a transition
starting at approximately t̃ = 1, to a statistically stationary or quasi-stationary state.
In run 5, there is a slow growth of energy in the interval 10< t̃ < 20, corresponding
to 2% of the energy injection P , which means that ε ≈ 0.98P in this interval. The
system can still can be regarded as being in a quasi-stationary state in this interval.
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Run Fh

Lx

Lz

Lx

�x

�x

�z

�z

lO
νh = κh νv = κv No × 10−4 �tP 1/3/l

2/3
h

1 6.17 × 10−2 8 256 1 1.02 1.89 × 10−13 1.89 × 10−13 5 1.9 × 10−3

2 3.08 × 10−2 16 256 2 1.44 1.89 × 10−13 1.17 × 10−15 2 1.6 × 10−3

3 1.54 × 10−2 32 256 4 2.05 1.89 × 10−13 7.27 × 10−18 4 1.2 × 10−3

4 7.71 × 10−3 64 256 8 2.89 1.89 × 10−13 4.51 × 10−20 4 1.1 × 10−3

5 3.85 × 10−3 128 256 16 4.08 1.89 × 10−13 2.80 × 10−22 6 8.0 × 10−4

6 6.17 × 10−2 128 256 16 0.06 1.89 × 10−13 2.80 × 10−22 5
7 3.85 × 10−3 128 512 8 4.08 1.17 × 10−15 2.80 × 10−22 5 5.3 × 10−4

8 1.93 × 10−3 128 512 12 7.69 7.84 × 10−16 6.97 × 10−24 3 3.7 × 10−4

9 1.93 × 10−3 96 512 12 7.69 7.84 × 10−16 6.97 × 10−24 4 3.7 × 10−4

10 9.64 × 10−4 384 768 24 7.25 4.29 × 10−17 3.71 × 10−27 6 2.2 × 10−4

Table 1. Simulation parameters. No is the number of time steps and �t is the time step in
the statistically stationary state. For run 6 no stationary state was reached and the time step
was therefore decreasing during the whole run.
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Figure 3. Time evolution of normalized total energy and potential energy. The solid curve
showing a slow increase of total energy in the interval 10 < t̃ < 20 is from run 5.

However, the slow energy growth should make us cautious of trying to push the
Froude number to even lower values. The reason behind it will be discussed in § 4.1.
The transition beginning at t̃ = 1 is seen in all runs and is fastest for runs 4 and 5
with lowest Fh. The transition is from a state determined by the forcing, in which
there is practically no vertical variation, to a state in which there are layers separated
by strong vertical gradients. Figure 4(a) is a contour plot, in a vertical plane, of the
horizontal velocity component parallel to the plane at t̃ = 1, from run 1. As we can
see, there is still very little vertical variation. The field is dominated by the random
forcing. In figure 4(b), we see the same field from run 1, in the state when the energy
has reached a stationary level. Now there are layers separated by strong vertical
gradients. In figure 4(c), the fluctuating temperature field is plotted in a vertical plane
and again we see the layered structure. Contour plots of the velocity and temperature
fields from runs 2–5, look very similar to the plots in figures 4(b) and 4(c), if the
vertical sides of the boxes are stretched to the same length in the plots.
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(a)

(b)

(c)

Figure 4. Contours in a vertical plane of (a) the horizontal velocity component parallel to the
plane at t̃ = 1, (b) the horizontal velocity component parallel to the plane in the statistically
stationary state, and (c) the fluctuating temperature in the statistically stationary state, from
run 1. Lz/Lx = 1/8.

(a)

(b)

Figure 15. Contours in a vertical plane of (a) the horizontal velocity component parallel to
the plane and (b) the fluctuating temperature, from run 8. The vertical side of the box is
magnified by a factor of 24 in the figures. In the simulation, Lz/Lx = 1/192, while in the figure,
Lz/Lx = 1/8.

In figure 5, we have plotted the normalized total dissipation ε/P and the normalized
dissipation of potential energy εP /P versus t̃ for runs 1–5. As can be seen, there is
a balance between energy input and dissipation during the whole runs except in the
initial phase. Since the energy input is at large scales and the dissipation takes place
at small scales, we can conclude that there is an energy cascade from large to small
scales. In this case, there is also a considerable transfer of energy from kinetic to
potential energy. Since we have chosen to restrict the energy input P to be in the
form of kinetic energy this transfer is exactly equal to εP . This transfer is, of course,
not a universal feature of the motion, but is due to the type of forcing we have used.
In figure 5, we see that there is a small, but significant, decrease of εP /P , from run 1
to run 5. As seen in figure 3, there is also a corresponding slow decrease of potential
energy EP from run 1 to run 5. We do not speculate about the reason for this
small decrease, but note that εP /εK ≈ 1/3 for run number 5, with the lowest Froude
number. This is consistent with the estimates made by Lindborg & Cho (2001b) from
lower stratospheric data.
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Figure 5. Time evolution of normalized total dissipation and dissipation of potential energy.
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Figure 6. Time evolution of normalized energy content in the vertical velocity component.
The lowest curve is from run 1.

We suggest that there is another universal feature to be seen in these simulations,
in addition to the transfer of energy from large to small scales, and this is the
transfer of energy from horizontal modes to vertical modes. Ninety nine per cent of
the energy input is in modes for which kv = 0. Energy is then transferred from these
modes to modes for which kv is large. From another point of view, this process can
be described as a perpetual formation of layers. We suggest that this is a universal
feature of strongly stratified flows in general.

While, according to our assumptions, the total kinetic and potential energy should
be independent of the Froude number, the energy content in the vertical velocity
component, Ew , should, according to (29), scale as ∼ F 2

h . In figure 6, we have plotted
Ew/(F 2

h P 2/3l
2/3
h ) versus t̃ . As we can see, there is no similarity between the five runs.

The curve for run 1, with the largest Froude number, is removed from the other
curves. However, there is a good similarity between the three lowest Froude number
runs. This is in line with what can be expected. For runs 1 and 2, Fh is a bit higher
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Figure 7. Horizontal kinetic energy spectra. The upper solid curve in the inertial range is
from run 1, and the lowest curve is from run 5.

than the estimated critical value, while for runs 3–5 it is lower. We would like to
emphasize that F 2

h is varied by a factor of 1/256 from runs 1 to 5, while there is
a variation by a factor of 5 between the normalized curves, so there is indeed a
considerable variation of the absolute value of Ew . For run 5, the energy content in
the vertical velocity component relative to the total energy is as small as 1.1 × 10−3.

Before presenting the plots of the one-dimensional energy spectra, we should
write down how we computed them. The one-dimensional horizontal kinetic energy
spectrum was calculated as the mean value of the kx and the ky spectra,

EKh
(kh) = 1

2


Lx

2π

∑
|kx |=kh

ky ,kz

1
2
ûi û



i +

Ly

2π

∑
|ky |=kh

kx ,kz

1
2
ûi û



i


 , (33)

and the one-dimensional vertical kinetic energy spectrum was calculated as

EKv
(kv) =

Lz

2π

∑
|kz|=kv

kx ,ky

1
2
ûi û



i . (34)

The one-dimensional potential energy spectra were calculated in a corresponding way.
In figure 7, we have plotted the one-dimensional horizontal spectra of kinetic energy

for runs 1–5. The effect of the forcing is clearly visible in wavenumber kh = kf = 4.
At the very highest wavenumbers the spectra are falling off rapidly to very small
values, showing that the resolution is good enough with the given diffusion model.
Between kf and the dissipation range there is an intermediate range where we should

look for a possible k
−5/3
h -dependence of the spectra. In figure 8, we have plotted the

one-dimensional spectra of potential energy. Apart from wavenumbers smaller than
kf , the potential energy spectra look similar to those of the kinetic energy spectra. In

figures 9 and 10, we have plotted the spectra in compensated form: EK (kh)k
5/3
h /ε

2/3
K

in figure 9 and EP (kh)k
5/3
h ε

1/3
K /εP in figure 10. For the highest Froude number runs,

there are no clear power-law dependences of the spectra. However, it is clear that the
spectra are approaching a k

−5/3
h -dependence as the Froude number is decreased. For
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Figure 8. Horizontal potential energy spectra. The upper solid curve in the inertial range is
from run 1, and the lowest curve is from run 5.
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Figure 9. Compensated horizontal kinetic energy spectra. The upper solid curve in the
inertial range is from run 1, and the lowest curve is from run 5. Dotted line, C1 = 0.51.

run 5, with the lowest Froude number, the compensated spectra fall on straight lines.
Writing the power laws as

EKh
(kh) = C1ε

2/3
K k

−5/3
h , (35)

EPh
(kh) = C2

εP

ε
1/3
K

k
−5/3
h , (36)

where C1 and C2 are constants, from figure 9 and 10 we can estimate the constants
to C1 ≈ 0.51 and C2 ≈ 0.51. Within the given numerical accuracy, we find that they
have the same value. In this study, we will not speculate about the reason for this,
but leave it as a challenge for future investigators to explain.

In principle, we could have written the power laws using only the total
dissipation, ε, as the scaling parameter, that is in the form EKh

(kh) = C ′
1ε

2/3k
−5/3
h

and EPh
(kh) = C ′

2ε
2/3k

−5/3
h where C ′

1 and C ′
2 are other constants. If the ratio εP /εK is

a universal constant, then C ′
1 and C ′

2 have the same degree of universality as C1 and
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Figure 10. Compensated horizontal potential energy spectra. The upper solid curve in the
inertial range is from run 1, and the lowest curve is from run 5. Dotted line, C2 = 0.51.

C2. However, it was found in the companion paper (Lindborg 2005), that the ratio
εP /εK tends to increase somewhat in the presence of system rotation, and that the
most general expressions of the scaling laws are (35) and (36).

The approach of the spectra towards a k
−5/3
h -power law is in full agreement with

the hypothesis presented. The Froude numbers of runs 1 and 2 are both a bit higher
than the value we estimated for Fhcrit

. There is a general similarity between these two
runs and the other three runs, in terms of the development of total energy and the en-
ergy dissipation. Obviously, there is also a forward cascade taking place in these runs.
However, there is no clear power-law dependence of the spectra in these runs. This
should be explained by the fact that we are in a transition region between two different
modes of motion: the strongly stratified cascade and the classical three-dimensional
Kolmogorov cascade. In this transition region, there is no clear power-law dependence.
By decreasing the Froude number, we obtain a clear approach to (35) and (36).

We now turn to the one-dimensional vertical spectra. Since only 32 points were
used in the vertical direction, these spectra are rather narrow. For this reason, we will
not look for any power-law range, but only investigate to what extent the spectra
conform to the similarity expressions (12) and (13). In figure 11, the scaled kinetic
and potential energy spectra for runs 1–5 are plotted, EKv

/u2lv (solid lines) and
EPv

/u2lv (dashed lines) versus the scaled vertical wavenumber kvlv , where lv has been
calculated according to (16). As we can see, there is a reasonable collapse of the
kinetic energy spectra, except for the dissipation range, where such a collapse should
not be expected. As for the potential energy spectra there is a minor decrease in
magnitude with decreasing Fh, reflecting the fact that there was a minor decrease of
total potential energy with the increasing degree of stratification from run 1 to run
5. However, given that Fh as well as the box height were decreased by a factor of
16 from run 1 to run 5, we find the collapse to be reasonable also for the potential
energy spectra.

On the whole, the results from runs 1–5 are in general agreement with the hypothesis
presented. A forward stationary energy cascade was seen in all runs, a cascade of
both kinetic and potential energy. A reasonable similarity of global measures was
seen between all five runs and a reasonable similarity of the spectra was seen between
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Figure 11. Normalized vertical kinetic (solid lines) and potential (dashed lines) energy spectra
for runs 1–5. In the dissipation range, we see the spectra from run 1 to run 5 from right to
left, with Fh increasing in the opposite direction.
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runs 3 and 5, with the lowest Froude numbers. Moreover, a k
−5/3
h -range was seen for

the horizontal energy spectra.

4.1. Runs 6–10

In runs 1–5 we have adjusted our parameters so that Lz/Lx ∼ Fh. In fact, we have
Lz/Lx = 2.03Fh in all five runs. We now ask, ‘What would happen in a simulation
with Lz/Lx � Fh?’ In this case, the energy which is fed into the horizontal modes
with characteristic length scale lh, cannot be transferred to modes with characteristic
vertical length scale lv ∼ Fhlh, because there are no such modes. Therefore, energy
must accumulate in the horizontal modes and a stationary state will never be reached.
Energy will continue to grow. To test whether this is what happens, we have run
a simulation (run 6) with Fh = 0.0617 and Lz/Lx = 1/128 = 0.13Fh. The parameters
of run 6 are given in table 2. In figure 12, we have plotted the evolution of the



Energy cascade in a strongly stratified fluid 225

total energy for run 6. Indeed, there is a continuous growth of energy through the
whole simulation. Kinetic energy is accumulated in the same horizontal modes as it
is introduced to by the forcing, while the growth of potential energy is negligible. We
find this test to be of crucial importance for the consistency of the present hypothesis.

As we pointed out, there is a slight difference between the energy evolution of run
5, as seen in figure 3, and the rest of the runs. For this run, the energy curve is not
levelling out as fast and as completely as in the other runs. In the interval 10< t̃ < 20,
there is a slow growth of energy corresponding to 2% of P , and the energy is
levelling out at a somewhat higher value. A closer inspection shows that the energy
accumulation in run 5, is in purely vertical modes, i.e. modes for which kρ =0. These
modes correspond to layers filling the whole box. A similar energy accumulation has
been observed in small-scale forced box simulations of the Boussinesq equations by
Smith & Waleffe (2002) and large-scale forced simulations by Laval, McWilliams &
Dubrulle (2003) and Waite & Bartello (2004). In the Appendix, we discuss the possible
reasons behind this phenomenon and suggest that the main reason is that when the
layers are becoming so thin that they are comparable with the diffusion length scale,
they also become stabilized and do not break up in the horizontal. In other words,
we think it is a low-Reynolds-number effect which can be avoided by decreasing the
influence of diffusion, which normally requires increased resolution. To support this
hypothesis, we have run three simulations with different vertical diffusion coefficients,
showing that the growth in kρ = 0 modes increases with increased vertical diffusion.
These are presented in the Appendix. Here, we proceed by investigating whether the
slow energy growth in kρ = 0 modes can also be avoided by decreasing the horizontal
diffusion coefficients, which requires increased horizontal resolution. At the same
time, we will investigate whether a broader k

−5/3
h -range can be obtained in this

way.
First, we make two further runs with doubled resolution in the horizontal direction

as compared to run 5. In the first of these runs (run 7), the parameters are the same as
in run 5, except for �x/Lx and νh. In run 8 we halve the Froude number as compared
to runs 5 and 7, and at the same time decrease the ratio Lz/Lx by a factor of 2/3, so
that Lz/Lx = 1/192. In run 8, we also use somewhat lower values of the constant a

in (32) to determine the diffusion coefficients. Then, we also make another simulation
(run 9) to show that our general results are independent of the height of the box. The
principal difference we should see by increasing the box height is a corresponding
increase of the number of layers. In principle, we should be able to produce the same
kind of results in cubic boxes as in our very elongated boxes, however, at a much
higher computational cost. In run 9, we take the more modest route of increasing
the box height by a factor of two as compared to run 8, leaving all other parameters
unchanged. This means that Lz/Lx = 1/96 in this run and that the number of grid
points is 64×5122 as compared to 32×5122 in runs 7 and 8. In run 9, we introduce the
weak perturbation forcing in the vertical modes kz = (6, 7, 8) × 2π/Lz, as compared
to kz =(3, 4, 5) × 2π/Lz in the other runs, so that the perturbation has approximately
the same absolute scale when we have doubled Lz. We also shut off this weak forcing
after 8000 of a total of 40 000 time steps, and instead inject 100 % of the energy
into the purely horizontal modes. We do this to show that the perturbation forcing is
important only to introduce the initial layering and once this has been done, the layer
formation will continue without this weak perturbation. In figure 13, we can see the
energy evolution from runs 7–9 and also run 10 which will be discussed below. As we
can see, there is no slow energy growth visible in this plot. This is in agreement with
the arguments we developed above. By decreasing the horizontal diffusion length scale
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Figure 13. Time evolution of normalized total energy and potential energy.
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Figure 14. Compensated horizontal kinetic and potential energy spectra from runs 8 and 9.

ηh in runs 7–9. as compared to run 5, we have avoided the slow energy accumulation
in the modes for which kρ = 0.

In figure 14, we have plotted the compensated kinetic and potential energy spectra
from runs 8 and 9. The spectra are computed as time averages over five different
spectra taken at intervals of approximately one eddy turnover time. There is a one
decade long range where spectra are in good agreement with (35) and (36) and, as far
as we can see, the two constants take the same value: C1 ≈ C2 ≈ 0.51. For both of
the runs, we calculated εK and εP as time averages over the same total time interval
as the spectra were taken from, and found that εK = 0.71 and εP =0.29 in both cases.
From the results from runs 8 and 9, we can conclude that we have used sufficiently
high boxes.

To illustrate the layer-formation process, we present contour plots in a vertical
plane, from run 8, of the horizontal velocity component parallel to the plane in
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figure 15(a) and the temperature field in figure 15(b) (see page 219). In both plots,
the vertical side of the box is magnified by a factor of 24 and in both plots we see the
characteristic layered structure. We find it remarkable that this structure is developed
in this extremely elongated box, in spite of the fact that virtually all energy is fed into
modes with no vertical variation. In the presence of strong stratification, the energy
which is fed into the modes for which kv = 0, will spread to modes with large kv , a
process which is seen as layer formation. This process is so efficient that all energy
which is fed into the large horizontal scales, is successively transferred to small scales
where it is dissipated.

So far, we have concluded from the overall energy balance that there must be a
cascade of energy from large to small scales, or, in other words, a spectral energy
flux from small to large wavenumbers. To prove, beyond all doubt, that there is
such a forward cascade we would like to quantify this spectral flux. However, since
the vertical length scale is so much smaller than the horizontal length scale, we
cannot use the standard definition for the spectral flux which is relevant in the case
of isotropic turbulence (see e.g. Frisch 1995). In the present case, we would like to
distinguish between the flux through horizontal wavenumbers, and the flux through
vertical wavenumbers, and also to distinguish between the flux of kinetic energy and
the flux of potential energy. To do this, we first define two spectral energy transfer
functions as

TK (kx,ky, kz) = − 1
2
iki(ûj ûiuj


 − û

j ûiuj ), (37)

TP (kx,ky, kz) = − 1
2
iki(φ̂ûiφ



− φ̂
ûiφ), (38)

with summation over repeated indices. If TK is negative for a certain Fourier mode, it
means that there is a transfer of kinetic energy from this mode and if TK is positive
it means that there is a transfer of kinetic energy to this mode from other regions
in Fourier space. The sum of TK over all Fourier modes is equal to zero, reflecting
the fact that the nonlinear terms in equation (1) conserve kinetic energy. TP has the
corresponding properties, with respect to transfer of potential energy in Fourier space
and the conservation of total potential energy by the nonlinear terms in equation (2).
We now define the kinetic energy flux through horizontal wavenumber kρ as

ΠKh
(kρ) = −

∑
√

k2
x + k2

y�kρ

kz

TK (kx,ky, kz), (39)

and the kinetic energy flux through vertical wavenumber kv as

ΠKv
(kv) = −

∑
|kz|�kv

kx ,ky

TK (kx,ky, kz). (40)

The corresponding fluxes of potential energy, ΠPh
(kρ) and ΠPv

(kv), are defined in the
corresponding way. Generally, a positive value of the flux functions means that there
is a flux of energy from small to large wavenumbers, that is a forward cascade, and
a negative value means that there is a flux in the other direction, that is an inverse
cascade. A constant flux range is said to be an inertial range.

To compute these fluxes, we have performed one more simulation (run 10) in a
7682 × 48 box. The side length ratio of the box was as low as Lz/Lx = 1/384 and
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Figure 16. Normalized horizontal kinetic (solid curve) and potential (dashed curve) energy

spectra from run 10. Dotted line, 0.51k
−5/3
h .

the Froude number as low as Fh = 0.00096. Exactly the same kind of evolution of
global parameters was observed as in the other runs: a fast transition beginning at
t̃ ≈ 1 from an initial linear growth of energy to a statistically stationary state. The
perturbation forcing was shut off after 20 000 of a total of 56 000 time steps and this
caused essentially no change observed in any of the computed global quantities, nor
in the spectra. The total energy injection was held constant by increasing the injection
into horizontal modes from 0.99P to P when the perturbation forcing was shut off.
The simulation was run for about twelwe eddy turnover times and the stationary
values of the global parameters were: E/(P lh)

2/3 = 1.08, EP /(P lh)
2/3 = 0.14, εK = 0.76

and εP = 0.24. The ratio between the energy content in the vertical velocity component
and the total energy was as low as Ew/E =3 × 10−4.

In figure 16, we see the horizontal kinetic and potential energy spectra from run
10. In this plot, we have averaged the spectra from eight different times separated by
one eddy turnover time. The spectra are normalized according to (35) and (36) using
εK = 0.76 and εP = 0.24, values calculated as time averages over the total time interval
from which the eight spectra were taken. As we can see, there is a range over one
decade long where both the curves fall onto the dotted line: 0.51k

−5/3
h . Again we find

that the two constants in (35) and (36) take the same value and with a reasonable
error estimate we determine these constants to C1 ≈ C2 = 0.51 ± 0.02.

In figure 17, we see the vertical kinetic and potential energy spectra from run
10. To illustrate the large separation of vertical scale from horizontal scale, we
have not normalized the vertical wavenumber in this plot. The smallest non-zero
vertical wavenumber is kv =384 which is comparable with the largest horizontal
wavenumbers. For comparison with equation (15), we have also inserted the curve
N2k−3

v (dashed line) in the figure. The spectra are still too narrow to distinguish any
power-law range. If we looked for a power law, we would probably see something
like k−m

v with 2.3 < m < 3.0, with the lower value for the potential energy spectrum.
However, the interesting thing about these spectra is not the exact slope, but that
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Figure 18. Total spectral energy flux (upper curve) and potential energy flux (lower curve),
versus kρ , from run 10.

they are in the vicinity of the dashed line N2k−3
v . This result is consistent with scaling

with N2 in the limit of low Froude number and high Reynolds number.
In figure 18, we have plotted the spectral energy flux through the horizontal

wavenumber kρ . The upper curve is the total flux and the lower curve is the potential
energy flux. First, we note that both curves are generally positive, which means that
there is a flux of kinetic and potential energy from low to high wavenumbers, i.e. a
forward cascade. Next, we note that the total flux is approximately equal to unity
from wavenumber kρ = 5, which is just one wavenumber larger than the forcing
wavenumber kf = 4, up to fairly large kρ . This means that all the injected energy
flows in the direction of large kρ . In the middle range of wavenumbers, corresponding

to the k
−5/3
h -range in figure 16, both curves show a nearly constant flux range. There

might be an objection that the curves are not sufficiently close to constant values to
justify the conclusion that there is a constant flux range. However, the same could
be said about the corresponding flux curves calculated from high-Reynolds-number
simulations of isotropic turbulence (Kaneda et al. 2003). These simulations show that
the constant spectral flux range is approached very slowly with increasing Reynolds
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Figure 19. Total spectral energy flux (upper curve) and potential energy flux (lower curve),
versus kvLz/Lx = kv/384, from run 10.

number for isotropic turbulence. There is no reason to expect a different behaviour
in the present case. Evidently, the k

−5/3
h -spectra in figure 16, can be interpreted as

the energy spectra in a constant spectral flux range, just as the corresponding energy
spectrum of three-dimensional turbulence.

In figure 19, we have plotted the energy flux through vertical wavenumber kv . The
upper curve is the total flux and the lower curve is the potential energy flux. In this
plot, we have normalized the vertical wavenumber by Lx/Lz = 384, which means that
the smallest non-zero vertical wavenumber corresponds to unity in the figure. As we
can see, the total flux through this wavenumber is very close to unity. This means
that all the energy which is injected in purely horizontal modes (kv =0) flows through
this wavenumber, kv =384, in the direction of even larger vertical wavenumbers. As
for the flux of potential energy, we can note that this function goes to zero for small
kv , owing to the fact that the potential energy was not forced. Instead, there is a
transfer from kinetic to potential energy in the smallest vertical wavenumbers. This
energy is then flowing in the direction of larger kv and ΠPk

has a maximum around
kv = 1152, which is larger than the largest horizontal wavenumbers in figure 18. This
is an extreme case of the highly anisotropic spectral energy flux through large vertical
wavenumbers which was discovered by Godeferd & Cambon (1994) by investigating
an EDQNM model for moderately stratified turbulence. In physical space, this flux
manifests itself as layer formation.

4.2. The length-scale ratio

In figure 20, we have plotted the vertical to horizontal length-scale ratios lv/ lh and
l′
v/ lh versus Fh for all our runs, including run 6 in which no stationary state was
reached. lv and l′

v were calculated according to (16) and (17) using vertical spectra
which were time averaged, except for run 6 where the spectra from the end of the
simulation were used. As seen in the figure, both the length scale ratios follow a
linear dependence on Fh, as indicated by the dashed lines. This is consistent with (7).
Ideally, this relation should have been tested without decreasing the box height with
decreasing Fh. However, with the computer resources which we have available this
would not have been possible. The question is whether the linear dependence of lv/ lh
and l′

v/ lh on Fh seen in figure 20 is an artefact of the adjustment of the side length
ratio of the box according to Lz/Lx ∼ Fh. We will argue that this is not the case.
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First of all, we note that for the runs giving statistically stationary solutions, the box
side ratio has not been varied in exact proportion to Fh. We have Lz/Lx = 2.03Fh in
runs 1–5 and run 7, Lz/Lx = 2.70Fh in runs 8 and 10 and Lz/Lx = 5.41Fh in run 9.
In particular, a comparison between runs 8 and 9, where Lz/Lx has been doubled in
run 9 as compared to run 8, without any other change, indicates that the computed
length scale ratios are not artefacts of the side length ratio of the box. The calculated
length scale ratios were found to be lv/ lh = 0.0029, 0.0028 and l′

v/ lh = 0.0019, 0.0018,
for runs 8 and 9, respectively, which are practically the same values. This indicates
that the box height is sufficiently large for the vertical length scale to develop inside
the box. Secondly, the fact that we see a perfect balance between energy injection
and dissipation indicates that the boxes are sufficiently high in each case. Virtually all
energy is injected into modes for which kv = 0 and is transferred to modes for which
kv is large. Had the boxes been too thin, all energy would not have been transferred
in this way. Instead, energy would have grown in the kv = 0 modes corresponding
to length scales larger than the box height. This is also what happens in run 6
where Lz/Lx = 0.13Fh. In this run, kinetic energy is constantly growing in the kv =0
modes where it is injected and the length scale ratio lv/ lh computed at the end of
the simulation is in fact larger than unity, as seen in figure 20. In this case, the
box is too thin for the vertical length scale to develop inside the box. The potential
energy in this case reaches a stationary value and the potential energy fluctuations
develop on the scale of the box height, which is reflected by the very low value of
l′
v/ lh for run 6 seen in figure 20. However, this is more of a curiosity, since there is
virtually no exchange from kinetic to potential energy and the amount of potential
energy is less than one-thousandth of the amount of kinetic energy through the whole
simulation. On the whole, we can conclude that our results are supporting the length
scale relation (7) and thereby also the scaling (9) suggested by Billant & Chomaz
(2001), since Fv ∼ lh/ lvFh ∼ 1. A direct calculation of Fv =

√
EK/Nlv gives Fv ≈ 0.6

for all the statistically stationary solutions. That Fv ∼ 1 has also been observed in
numerical simulations by Godeferd & Staquet (2003).
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4.3. Comparison with the results by Waite & Bartello

Waite & Bartello (2004, hereinafter referred to as W & B) have performed a series of
simulations of the Boussinesq equations which in some respects are similar to those
presented here. W & B use a forcing which is restricted to purely horizontal modes
(kv =0) with at sharp peak at kρ =3 as compared to kρ = 4 which we have used.
Instead of introducing a weak perturbation forcing in vertical modes, as we do, they
start with non-zero random initial fields, ensuring that vertical structures will emerge.
By shutting off the perturbation forcing in our runs 9 and 10 and continuing the
simulations with forcing only in horizontal modes, we have shown that our results
are not dependent on a continuous weak forcing in vertical modes, but only on
the existence of an initial seed energy, as in their simulations. W & B also observe
a strong tendency to layer formation, that is a strong growth in modes for which
kv � kρ , despite the fact that there is no forcing in modes for which kv 
= 0. They also
present evidence that the layer thickness scales as lv ∼ u/N , confirming the scaling
suggested by Billant & Chomaz (2001). After the initial growth of energy, the W & B
simulations are almost energetically stationary, a fact which is supporting the forward
energy cascade hypothesis. Although they observe the same kind of weak growth in
kρ =0 modes as Smith & Waleffe (2002), they do not interpret this growth as a sign
of an inverse energy cascade. On the other hand, they conclude that their results
confirm the lack of an inverse cascade. So far, the results of our simulations and the
simulations by W & B are very similar.

However, there are also important differences. First of all, W & B perform their
simulations in a cubic box and the resolution scale is the same in the vertical and the
horizontal directions. They also use hyperviscosity, however, with the same diffusion
coefficients in the vertical and the horizontal directions. As they increase the strength
of the stratification and the layer thickness decreases, the number of layers increases
in the box. This is reflected in their one-dimensional vertical energy spectra which
exhibit a long flat range from the smallest non-zero wavenumber, corresponding to
the box height, to a wavenumber kv ∼ N/U , corresponding to the layer thickness.
As shown by W & B, this flat range is just a mathematical consequence of the fact
that the layer thickness lv is the largest vertical physical length scale in the field and
that lv is much smaller than the box height. W & B demonstrate that the layers are
dynamically decoupled from each other. This general result can, in fact, be used in
support of our approach of using highly elongated boxes containing only a few layers.
Having demonstrated that the fields decouple into a number of layers and that there
are no larger vertical length scales than the layer thickness, it is computationally
more economic to include only a small number of layers in the box. The reason why
we do not see any long flat range in our vertical spectra is that the layer thickness is
comparable to the box height in our simulations. Our vertical spectra instead reflect
the dynamics within the thickest layers.

As the strength of the stratification is increased in the simulations of W & B, the
whole flow field is stabilized. Contour plots in vertical planes reveal a number of
smooth layers piled on top of each other, without much internal structure, in the ver-
tical or in the horizontal directions. There are no instabilities or overturning motions
visible as in the corresponding plots of fields with a weaker degree of stratification.
We may interpret this stabilization as a mere consequence of the strong stratification.
However, there is another interpretation which we find more plausible. As the layers
are becoming thinner they ultimately become comparable to the resolution scale �z,
where diffusion is strong. This tends to stabilize the layers. With a thickness compar-
able to �z they can, of course, no longer reveal any internal structure in the vertical
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direction and they also become more resistant to instabilities that tend to break them
up in the horizontal direction. The horizontal spectra of W & B exhibit a drop from
an approximate k

−5/3
h -dependence at moderate stratification to an approximate k−5

h -
dependence at strong stratification. The whole spectrum becomes much steeper with
much lesser energy content in high wavenumbers as the stratification increases. We
interpret this as a consequence of the viscous stabilization of the layers which prevents
them breaking up in the horizontal direction. In our simulations, we have avoided this
stabilization by decreasing the vertical resolution scale as we increase the stratification,
keeping the number of resolution points per layer approximately constant. Our
contour plots of flow fields with a very strong degree of stratification exhibit layers
with more internal structure and also breaking events. This is why our horizontal
spectra do not show the sudden drop from k

−5/3
h to k−5

h as we increase the stratification.

5. Conclusions
Let us compare the extent of scales we have simulated in the largest simulation

(run 10) with the mesoscales in the upper troposphere or lower stratosphere. Based
on realistic values of N and ε, we estimated the Ozmidov length scale to be about
3 m. In run 10 we have chosen �z ≈ 7lO , which would correspond to a vertical
resolution of about 20 m. Since we used 48 points in the vertical direction, the box
height would be about 1 km. The horizontal resolution would be �x ≈ 500 m and
the width of the box would be about 400 km. The forcing scale would correspond to
a scale of about 100 km and the k

−5/3
h range we see in figure 16, would correspond

to a range of wave lengths from 10 km to 100 km, where we actually do find the
k

−5/3
h -range in figure 1. Although our range of scales is still limited, both in the vertical

and horizontal, as compared to the real atmosphere, we are clearly in the correct
domain. Our simulation model is, of course, in many respects extremely idealized
and simplified. The boundary conditions are periodic, and the forcing is supposed
to replace the prevalence of synoptic atmospheric motions capable of feeding energy
into the mesoscale range, by some mechanisms similar to what we see in the zigzag
instablity. Moreover, the very crude diffusion model is supposed to replace the action
of classical three-dimensional turbulence on the mesoscale motions. At vertical scales
around the Ozmidov length scale or a bit larger, classical three-dimensional turbulence
will be produced and will act on the mesoscale motions in such a way that energy is
further transferred all the way down to the Kolmogorov scale, η ≈ 1 cm, where it is
dissipated by molecular diffusion. It may be argued that much more understanding
of the dynamics could be gained by also resolving this dynamically active range of
scales, or at least a part of it. However, to make a substantial gain, we would probably
need to resolve scales well below the Ozmidov scale on an isotropic grid, which would
require an enormous increase in the number of computational points. As long as the
number of computational points cannot be increased by several orders of magnitude,
we think the most fruitful approach is, in fact, to introduce a rather sharp viscous
cutoff at wavenumber kvmax

. If this is done, it can also be argued that the use of a
highly stretched grid is justified.

Simplifications and idealizations are necessary ingredients when complicated
phenomena are to be analysed. We think that the results from the simulations,
especially from runs 7–10 indicate that we have actually been successful in simulating
the kind of motion giving rise to the k

−5/3
h -spectra seen in figure 1. Clearly, we

have seen a forward energy cascade, just as in three-dimensional turbulence, and the
horizontal spectra have a broad k

−5/3
h -range, just as in classical three-dimensional

turbulence. Yet, it is evident that the motion is of a very different kind. Isotropy is a
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fundamental feature of classical Kolmogorov turbulence. Mathematically, isotropy
means invariance under rotations, i.e. there are no preferred directions. More
popularly, we can say that the turbulence looks the same in all directions and is
equally distributed over the three velocity components. The kind of motion we have
simulated here is radically different. It arises when Fh → 0 and in this limit, the
vertical to horizontal length scale ratio lv/ lh goes to zero, as does the ratio w/u

between vertical velocity and horizontal velocity. In this limit, the fluid is stable with
respect to generation of classical three-dimensional turbulence, but is unstable with
respect to formation of layers. Layers with thickness of the order of lv ∼ u/N are
perpetually generated by a basic zigzag type of instability. These layers break down
into smaller scales of motions, both in the vertical and the horizontal. Although the
vertical range of scales we have been able to simulate is limited, we may interpret the
positive energy flux through vertical wavenumbers as evidence of layer formation at
successively smaller scales, a process continuing till the layer thickness is of the order
of the Ozmidov length scale. As the layers become thinner, they also become sensitive
to instabilities which cause them to break up in the horizontal direction. (It is beyond
the scope of the present study to investigate the nature of these instabilities, but one
obvious candidate is Kelvin–Helmoltz instabilities. It has been shown by Riley &
deBruynKops (2003) that such instabilities appear in strongly stratified turbulence at
local spots where the Richardson number is small, although the average Richardson
number is of order unity.) In this way, a forward cascade is set up.

Despite the fact that w/u → 0, the motion is not two-dimensional, as also pointed
out by Billant & Chomaz (2001) and Lindborg (2002). This can be seen from the fact
that in the dynamic equations, the nonlinear terms including the vertical velocity are
of the same order as the nonlinear terms including the horizontal velocity, i.e.

w
∂u

∂z
∼ u

∂u

∂x
, w

∂φ

∂z
∼ u

∂φ

∂x
. (41)

A two-dimensional inverse energy cascade can arise when the terms including the
vertical velocity are negligible. This is clearly not the case here. Instead, we have seen
the case of a cascade which is as different from both the three-dimensional turbulence
cascade and the two-dimensional cascade as these two classical cases are different
from each other.

Dewan (1979) speculated that the physical mechanism behind the k
−5/3
h -range is a

forward energy cascade, just as in three-dimensional turbulence, but that the cascade
is not between ‘eddies’ which are statistically isotropically distributed in space, as in
three-dimensional turbulence, but between ‘waves’ which have a distinct orientation
in the field of gravity. He also suggested that the spectrum is determined by the flux of
energy from large to small scales, which is equal to the dissipation ε, and a universal
constant, corresponding to the Kolmogorov constant of three-dimensional turbulence,
but with a different value. In the present study, we have verified that this picture,
to a certain extent, is correct. We made the assumption that there are, in fact, two
different constants, one associated with the kinetic energy flux according to (35) and
one associated with the potential energy flux according to (36). However, as far as the
numerical accuracy permitted us to determine these two constants, they were found to
take the same value: C1 ≈ C2 = 0.51±0.02. We leave it to a future study to investigate if
there are any theoretical arguments that would permit us to reduce these two constants
to a single one. The computed value C1 = 0.51 is not too far from the value 0.67
which was estimated by Lindborg & Cho (2001a) from measurements of second- and
third-order structure functions using stratospheric aircraft wind data. The k

−5/3
h -range
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of the one-dimensional Nastrom–Gage kinetic energy spectra seen in figure 1 can
be fitted to the curve EKh

(kh) = 9.1 × 10−4(m2 s−3)2/3k
−5/3
h . With C1 = 0.51, this would

give εK =7.5 × 10−5 m2 s−3, which is very close to the value εK = 6.0 × 10−5 m2 s−3,
estimated by Cho & Lindborg (2001) from structure function calculations.

In 1997, Dewan also suggested that the k
−5/3
h -range in the horizontal spectra seen

in figure 1 and the k−3
v -range in the vertical spectra seen in figure 2, originate from

the same dynamics. It is true that we have not been able to reproduce a k−3
v -range

in the vertical spectra. However, we should not expect it to be easy to reproduce
such a spectrum numerically. Carnevale, Briscolini & Orlandi (2001) claim to have
reproduced a k−3 buoyancy spectrum range in large-eddy simulations of forced
stratified turbulence. However, their spectrum should not be interpreted in the light
of the hypothesis presented in this paper, since it is not a vertical spectrum, but is
computed as an average over all directions. Moreover, it is not a statistically stationary
spectrum, but produced just after events of strong wave breaking. To reproduce a
vertical k−3

v spectrum according to the present hypothesis, we must resolve a range of

vertical scales, rv , for which lO/F
1/2
hcrit

< rv � lv � lh, while the corresponding condi-

tion for reproducing the horizontal k
−5/3
h spectrum is to resolve a range of horizontal

scales, rh, for which lO/F
3/2
hcrit

< rh � lh, which is a far less restrictive condition. Let
us assume, as was done by Lindborg (2002), that the relation (7) holds, not only for
the thickest layers participating in the cascade motion, but also for all thinner layers
which are embedded in the thicker layers. If rv and rh are the vertical and horizontal
length scales of such a layer then we should have

rh∼N3

ε
r3
v . (42)

This cubic relation means that the thickest layers are the most elongated and the
thinnest layers are the least elongated. A variation of rv by a factor of 10 would
imply a corresponding variation of rh by a factor of 1000. To obtain one decade of a
vertical k−3

v -spectrum in a simulation we would therefore have to produce about three

decades of a horizontal k
−5/3
h -spectrum in the same simulation. If khmin

and kvmin
are the

smallest horizontal and vertical wavenumbers participating in the cascade, then it is
easily argued that khmax

/khmin
∼ (Fhcrit

/Fh)
3/2, while kvmax

/kvmin
∼ (Fhcrit

/Fh)
1/2. The reason

that we have not been able to reproduce the k−3
v -spectrum is probably that this range

is much narrower and does not appear as fast with decreasing Fh as the k
−5/3
h -range.

This is probably also the reason why the vertical k−3
v -spectrum is not as invariably

observed as the horizontal k
−5/3
h -spectrum and that there is still some debate on the

exact form of this spectrum. In most studies, the vertical spectra are observed to
follow a power law k−m

v , where m is somewhat smaller than 3. Our conjecture is that
this is due to a lack of asymptotics in the free atmosphere. The Froude number is on
the limit where a clear stationary k−3

v -spectrum appears. Despite the lack of success
in simulating the k−3

v -spectrum, there is strong indirect evidence in the present study

that it arises from the same dynamics as the k
−5/3
h -range. Indeed, according to (7) we

should look for the vertical one-dimensional spectra corresponding to the horizontal
k

−5/3
h -spectrum, in the range of wavenumbers where we do find the k−3

v -spectrum.
This leaves us with little room for alternatives to the hypothesis that these ranges
originate from the same dynamics.

There is one important respect in which we want to deviate from the ideas put
forward by Dewan and that is his description of the stratified cascade motion as
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consisting of a system of linear internal gravity waves which are ‘saturated’ in the
same sense as surface ocean waves are saturated according to the theory of Phillips,
(1966). In the ocean wave theory of Phillips, saturation is introduced as a phenomenon
opposed to and excluding the phenomenon of a cascade. He writes: ‘It appears that
the wave interactions are usually incapable of transferring energy from a given wave-
number band as rapidly as it is supplied by the wind’. Instead, energy is lost from
each wave by the mechanism of breaking which also restores the stability of the
wave. According to his eloquent description, energy is fed into each mode by the
wind field and sucked out from the same mode in ‘intermittent patches of foaming’
or ‘white horses’, i.e. small-scale turbulence. A wave which is maintaining its energy
balance in such a process is becoming ‘saturated’. In the system of motion we have
investigated here, energy is fed into only a few modes, corresponding to the largest
wave lengths and all other modes receive their energy from nearby modes in Fourier
space and give it away to other nearby modes in a continuous cascade. Energy is
sucked out of the system by diffusion in the smallest wave lengths, but there is no gap
between these and the other wave lengths in the system. Following Phillips, we find
it useful to use ‘saturation’ to describe a phenomenon which is essentially different
from, and excludes, the phenomenon of a cascade. Doing this, there is no doubt that
the motion we have investigated here is an example of a cascade motion, rather than
a saturated wave motion. If the term ‘wave’ should be used at all, it is clear that
we are not dealing with linear waves. If we were dealing with a system, which to
the lowest order could be considered as consisting of linear internal gravity waves,
then to the lowest order, we would have perfect equipartition of kinetic and potential
energy in each Fourier mode. This would imply that EKh

(kh) = EPh
(kh), which is also

a consequence of the saturated-cascade theory of Dewan (1997). In our simulations,
we instead have EKh

(kh) ≈ 3EPh
(kh) in the k

−5/3
h -range. This is far from perfect

equipartition.
Indeed, there is an important property of the motion which we have studied here

which is wave like, and that is its strong directional dependence, or ‘polarization’, in
the language of wave theory. It appears that this directional dependence is so strong,
that it is not only a statistical feature of the system, but a feature of each basic entity
of the system. The question is, what term we should use for such an entity? Despite
the strong ‘polarization’, we suggest that the term ‘wave’ should be avoided, since
there is a risk that this will lead to the notion of a linear wave. Instead, we suggest
that the more neutral term ‘layer’ should be used. The most important conclusion
to be drawn from the present study is that layer formation is a nonlinear cascade
process which is universal for strongly stratified fluids.

There is one important question which is to be given a preliminary answer before
we conclude this paper. If the formation of layers and the associated forward cascade
process is universal in strongly stratified fluids, why does it make itself apparent
at lh ≈ 500 km in the free atmosphere and not at the very largest planetary scales?
There is only one reasonable answer to this question, and that is that the effect of
the rotation of the Earth, which has been neglected in this study, will prevent the
forward cascade at larger horizontal scales. The critical value of the Rossby number
Ro = ε1/3/fol

2/3
h (fo =2Ω sin θ is the Coriolis parameter. Ω is the rotation rate of the

earth and θ is the latitude) over which the strongly stratified cascade can prevail can
be estimated from atmospheric data to Rocrit ≈ 0.1, which is a surprisingly low value,
corresponding to a fairly fast rotation. Indeed, in the companion paper (Lindborg
2005) we make a series of simulations with different rates of system rotation and
show that 0.09 <Rocrit < 0.14.
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Although layers may form even in rotating fluids, the thickness of the layers
will increase with the degree of rotation, which is a well-recognized fact. As an
example, we can cite Dritschel, de la Torre Juárez & Ambaum (1999) who write:
‘Rotation favors the formation of ‘deep’ flows having weak variations along the axis
of the fluid’s rotation . . . , whereas stratification favors the formation of ‘shallow’ flows
having strong variations across stratification surfaces.’ As the variation in the vertical
becomes smaller with increasing rate of rotation, the nonlinear term including the
vertical velocity will become negligible, which means that there will be no horizontal
vortex stretching and the forward energy cascade is inhibited, as shown in the theory
of quasi-geostrophic turbulence by Charney (1971). The conservation of a second
quadratic quantity, potential enstrophy, may lead to a forward enstrophy cascade
with an associated k−3

h -spectrum. It is still an open issue whether the narrow k−3
h -

range seen in figure 1, can be identified with such a range. This will be investigated
in a future study.

On a non-rotating planet, surrounded by a strongly stratified atmosphere, layer
formation would totally dominate all fluctuating atmospheric motions superimposed
on the mean circulation, from the very largest scales down to the scales where the effect
of stratification would become too weak to sustain the stratified cascade. Somewhat
counter-intuitively, a strongly stratified atmosphere on a non-rotating planet should
therefore be as least as, or even more, turbulent and ‘violent’ than on a rotating
planet.† On a rapidly rotating planet, on the other hand, quasi-geostrophic motions
would prevail from the very largest scales down to very small scales where we would
see a direct transition to classical three-dimensional turbulence. In the case between
these two extremes, such as our own planet, there is a length scale lh at which
there is a transition from a state dominated by rotation with no forward energy
cascade to a state dominated by stratification with a forward energy cascade. In fact,
lh = 500 km coincides with the standard value which is often given for the Rossby
deformation radius, which is ‘the scale at which rotation becomes as important as
stratification’ according to standard textbooks. In the companion paper (Lindborg
2005), we quantitatively demonstrate how the forward energy cascade in a strongly
stratified fluid is prevented by system rotation, by presenting another series of box
simulations of the Boussinesq equations with different rates of system rotation.

I thank the following persons for fruitful interactions during the development of
the present study: Edmond Dewan, Lars Arneborg, Paul Billant, Peter Bartello, Jim
Riley, Mike Waite and Tony Burden. Financial support from the Swedish Research
Council is gratefully acknowledged.

† It would be interesting to test the strongly stratified cascade hypothesis developed in this paper
against data from Venus which is a very slowly rotating planet having a rotation period of 243
days. Having done some preliminary work, we have found nothing in the literature that would
contradict that the atmosphere of Venus might be exposed to a very strong energy cascade of the
type described in the present paper. Despite its stable stratification, the atmosphere of Venus is
full of turbulence (see Izakov 2002 and references therein) and there are several violent dynamic
phenomena which are not yet understood, of which the most spectacular is super-rotation. The
outer part of the atmosphere is rotating with a period of four terrestial days, i.e. about sixty times
faster than the planet. It is generally believed (see Taylor 2002) that the momentum required to
sustain this rotation is transferred from the ground by some agent, supposedly some type of wave.
Another possible transfer agent would be a layer cascade field extending itself from the very largest
planetary scales down to very small scales.
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Appendix. The energy growth in kρ = 0 modes
In three recent numerical studies (Smith & Waleffe 2002; Laval et al. 2003; Waite &

Bartello 2004) of strongly stratified turbulence it has been observed that there is a
weak growth of kinetic energy in modes for which kρ = 0, or so called ‘shear modes’.
Smith & Waleffe (2002) interpreted this energy growth as a sign of an inverse energy
cascade, which sets in if the Froude number is below a certain critical value. This
interpretation is not consistent with our results. Waite & Bartello (2004) were more
inclined to attribute the phenomenon to the artificial periodic boundary conditions.
Waite & Bartello (2005) also made the interesting observation that the effect seems
to disappear in the presence of system rotation. We think that the effect may have
multiple causes. We agree with Waite & Bartello (2004) that the periodic boundary
conditions are most probably a part of the reason behind the energy growth. It is
a reasonable guess that the kind of almost ‘crystalline’ states seen in the end of the
simulations by Smith & Waleffe, with layers filling the whole box, should be more
easily obtained in a rectangular box with periodic boundary conditions than in some
other geometry with other boundary conditions. The weak forcing we have applied in
shear modes, responsible for 1% of the total energy injection and introducing some
phase scrambling into these modes, may be a part of the reason why we have not
generally observed the energy growth. On the other hand, in runs 9 and 10, we have
shut off this part of the forcing, without observing any growth of total energy.

Although the growth of energy in shear modes may have multiple causes, we think
that the main reason behind it is a viscous effect which becomes important when
the layer thickness is not sufficiently large as compared to a viscous length scale.
If the Froude number is successively decreased without a corresponding decrease of
the vertical resolution, then the number of vertical resolution points per layer, lv/�z,
will decrease accordingly, and so will the effective Reynolds number based on layer
thickness. At some point, the Reynolds number is so low that the layers will stop to
break up sufficiently fast to be destroyed at the same rate as they are produced and
energy balance cannot be maintained. In Fourier space this will result in a growth
of energy in kρ = 0 modes. This explanation may seem to contradict the finding of
Laval et al. that the growth in kρ = 0 modes did not decrease as they increased the
Reynolds number. However, the Reynolds number, Rλ, they define is not directly
based on a vertical length scale. It is very clear from the vertical spectra in their figure
10, that there is a very strong decrease of the vertical length scale with increasing Rλ.
This is also pointed out in their figure capture. It is therefore likely that the layer
thickness has, in fact, decreased as compared to the diffusion length scale, as they
increased Rλ during the simulation.

If this hypothesis is correct, with Navier–Stokes viscosity, we should see no growth
of energy in shear modes if

lv

η
∼FhRe

3/4
h ∼F

1/4
h Re3/4

v � 1, (A 1)

where η is the Kolmogorov scale. On the other hand, if this condition is not met, it
is possible that we would see something that would be tempting to interpret as an
inverse energy cascade, however, which is basically a low-Reynolds-number effect. The
layers which are formed in the presence of stratification and stabilized by viscosity
will extend themselves indefinitely in the horizontal. According to this interpretation,
the growth of energy in shear modes should not only be attributed to the artificial
boundary conditions or any other arbitrary feature of the numerical method, but
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can be an effect which has its counterpart in nature, in cases when the condition
(43) is not met. Since we do not use Navier–Stokes viscosity in our simulations, it is
impossible for us to test this condition quantitatively. However, as pointed out by one
of the reviewers, if our hypothesis is correct, we should see an increased growth in
shear modes if we increase the vertical diffusion, leaving everything else unchanged. To
investigate whether this happens, we have run three more simulations. The parameters
are the same as in run 4, except the vertical diffusion coefficients, which are set to
νv = κv = 3.12 × 10−21 , 2.57 × 10−20 and 1.32 × 10−19 in the three runs which we label
as A1, A2 and A3. In figure 21, the evolution of energy in the shear modes is plotted
for the three runs. As can be seen, the growth of energy is strongest in run A3 with the
largest vertical diffusion and weakest in run A1 with the smallest vertical diffusion.
While the total energy is reaching its stationary value after a few eddy-turnover times,
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it obviously takes a little longer for the energy content in the shear modes to reach a
stationary value. As a matter of fact, there seems to be a weak growth of energy also
after t/τ = 20 in run A1 with the smallest vertical diffusion. However, this growth
is negligible, since it is smaller than 0.001P . In fact, all three runs are very close
to statistical stationarity from t/τ =20, and the dynamics in the three runs are very
similar to each other. The mean values of εK and εP agreed to within three digits
between the three runs and the total mean dissipation was calculated to ε =1.000 in
all three runs. The mean values of potential energy and the energy content in the
vertical velocity component agreed to within two digits. In fact, the only significant
differences we saw between the three runs were the difference in the kinetic energy
content in the shear modes and the difference in the high wavenumber part of the
vertical spectra. In figure 22 we have plotted the vertical kinetic energy spectra, and
the difference between the degree of vertical diffusion is clearly reflected in the high
wavenumber part. In figure 23, we have plotted the horizontal energy spectra for the
three runs. As can be seen, there are no important differences here.

We can draw three conclusions from these results. First, the energy growth in
shear modes will decrease with decreased vertical diffusion. In the ideal case of very
high Reynolds number, the effect will probably disappear. Secondly, the fact that the
energy growth in shear modes varied so much between our three test runs without any
significant variation in other quantities, indicates that this growth has little influence
on the overall dynamics of our simulations. Thirdly, the fact that the horizontal
energy spectra showed no significant change when we varied the vertical diffusion
coefficients indicates that our results for the horizontal spectra are robust.
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